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A simple explicit formula for the effective

dielectric constant of binary 0-3 composites
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We have derived a simple, analytic formula for the prediction of the effective dielectric
constant of binary 0-3 composite materials. In comparison with a popular formula in the
field (Jayasundere and Smith [1]), it gives the expected asymptotic value for the internal
electric field of the inclusions when their total volume fraction tends to one. It is also
applicable to the whole range of the volume fraction of the inclusions and is reasonably
good for all values of the dielectric constants of the constituents. For non-conductive
constituents, it gives effective complex permittivity prediction that fits well to experimental
data, out-performs the Jayasundere-Smith formula and a linearized version [2, 3] of the
well-known Bruggeman formula. C© 2004 Kluwer Academic Publishers

1. Introduction
In a two-phase composite (i.e., a binary composite),
each phase may be spatially self-connected in zero, one,
two, or three dimensions, thus giving many different
combinations of phase connectivity, which are usually
indicated by two numbers denoting the connectivity of
the filler and that of the host matrix, respectively. For
example, a particulate-filled composite can be denoted
as a 0-3 composite.

The effective dielectric constant of a 0-3 composite
has been studied by many researchers [4–6]. Among
those, Jayasundere and Smith formula [1] is a popular
one [7–9]. It is an analytic formula for the effective
dielectric constant ε of a binary 0-3 composite, derived
by modifying the well-known Kerner expression [4] to
include interactions. The developed expression, which
is valid when εi � εm, where εi and εm is the dielectric
constant of the inclusion and the matrix respectively, is
a function of the volume fraction φ of the inclusions:

ε = εm(1 − φ) + εiφ[3εm/(εi + 2εm)][1 + 3φ(εi − εm)/(εi + 2εm)]

(1 − φ) + φ(3εm)/(εi + 2εm)[1 + 3φ(εi − εm)/(εi + 2εm)]

(1)

The predictions given by this formula compare favor-
ably with experimental data for piezoelectric ceramic
inclusions in a dielectric continuum having differing
dielectric constants [7–9].

However, we find that as an intermediate step in their
derivation, they have expressed the total electric field
�Ei inside a spherical inclusion in terms of the applied

field �Eo by the following formula:

�Ei = 3εm

εi + 2εm

(
1 + 3φ

εi − εm

εi + 2εm

)
�Eo (2)
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We note that when φ tends to one, the above expression
does not give �Ei = �Eo, the expected asymptotic value.

Also, as mentioned above, the formula is not valid
when εi < εm.

Another formula which is widely used in the 0-3
composite field is that of Bruggeman [5]:

εi − ε

ε1/3
= (1 − φ)

εi − εm

ε
1/3
m

(3)

This is an implicit formula for ε. In order to find ε, one
has to solve a non-linear equation. This limits its uses in
situations where a simple, explicit expression is more
desirable.

It is the aim of this work to develop such a formula
for ε that gives reasonably good predictions for most
situations.

The following is the structure of this article. In
Section 2, the electric displacement in a typical inclu-
sion is approximated to be the sum of that due to the
medium and that due to other inclusions treated as a
matrix of randomly distributed electric dipoles. A sim-
ple analytic formula for the prediction of the effective
dielectric constant for binary 0-3 composite materials is
then derived. In Section 3, we compare the predictions
calculated by this formula with experimental data, the
Jayasundere and Smith formula and the Bruggeman
formula. For the cases that εi < εm, we compare, in
Section 4, our predictions to simulated data obtained
using numerical methods. Then in Section 5, we ex-
tend our formula for the prediction of the effective
complex permittivity and compare the results to exper-
imental data, the complex version of the Jayasundere
and Smith formula, as well as to a linearized version of
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the Bruggeman formula. Some conclusions are made
in the last section.

2. Theory
Consider a particulate-filled composite material com-
posed of dielectric spheres with dielectric constant εi
dispersed in a continuum medium with dielectric con-
stant εm.

Suppose the external electric field is �Eo along the z-
axis, it can be shown that as long as the inclusions are
uniformly distributed or are well separated from one
another, the electric field �Ei inside each inclusion is
uniform and is parallel to �Eo. Also, the polarization of
each inclusion, �Pi, is related to the internal electric field
�Ei by the following equation:

�Pi = (εi − εm) �Ei (4)

Now we consider the electric displacement �D′
m as seen

by a particular single inclusion to be the sum of two
parts: one due to the pure medium and the other due to
the total polarization �P of all other inclusions taken as
“smeared out” uniformly within the medium:

�D′
m = εm �Em + �P (5)

We have �P = φ �Pi, where φ is the volume fraction of
the inclusions.

Therefore, by using Equations 4 and 5, we get

�D′
m = εm �Em + φ �Pi = εm �Em + φ(εi − εm) �E i (6)

For a single inclusion, as long as �P is a constant, we
have [10],

�Di + 2εm( �E i − �Em) = �D′
m (7)

Here �Di = εi �E i is the electric displacement inside an
inclusion.

From Equations 6 and 7, we get

[εi + 2εm − φ(εi − εm)] �E i = 3εm �Em (8)

Note that �Eo = φ �E i + (1 − φ) �Em and therefore when
φ = 1, Equation 8 gives �E i = �Eo, the correct asymp-
totic value.

Consider the volumetric average of the quantity �Q ≡
�D − εm �E , where �D is the displacement vector and �E
is the electric field:

〈 �Q〉 = 1

V

∫
V

�Q dV = 1

V

∫
V

( �D − εm �E) dV

= 〈 �D〉 − εm〈 �E〉 (9)

where 〈x〉 denotes the volumetric average of the phys-
ical quantity x over the whole composite.

Since at each point in the matrix material, we have
�Dm = εm �Em and hence �Q = 0 inside the matrix, and

we can write

〈 �Q〉 = 1

V

∫
Vi

( �Di − εm �E i) dV = 1

V

∫
Vi

(εi �E i − εm �E i) dV

= φ(εi − εm) �E i (10)

In the last equality, we have used the fact that φ, the
volume fraction of the inclusions, equals to Vi/V .
The effective dielectric constant ε of the composite is
defined by 〈 �D〉 = ε〈 �E〉. From Equations 9 and 10, we
get

ε = εm + φ(εi − εm)
�E i

〈 �E〉

= εm + φ(εi − εm)
�E i

φ �E i + (1 − φ) �Em
(11)

Using Equation 8, we finally obtain

ε = εm + φ(εi − εm)
1

φ + (1 − φ) εi+2εm−φ(εi−εm)
3εm

(12)

Note that when φ = 0, Equation 12 gives ε = εm and
when φ = 1, it yields ε = εi, as expected.

Equation 12 can also be written in the form:

ε

εm
= 1 + φ

(
εi

εm
− 1

)
φ + 1

3 (1 − φ)
[

εi

εm
(1 − φ) + φ + 2

] (13)

Note that when εi = εm, we have ε = εm, as required.
Fig. 1 shows the logarithm of the ratio ε/εm for φ = 0

to 1 for values of εi/εm, ranging from 0.001 to 1000.

Figure 1 Logarithm of the relative effective dielectric constant values
predicted by Equation 13 for various ratios of inclusion (εi) to matrix
(εm) dielectric constants.
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Figure 2 Predictions by Equation 13 compared with experimental data
of Yamada [11], Bruggeman formula and the Jayasundere and Smith
formula.

When the inclusion volume fraction φ is sufficiently
small, it can be shown that Equation 13, the Bruggeman
formula and the Jayasundere and Smith formula all have
the same form:

ε

εm
= 1 + 3φ

(
εi

εm
− 1

)
εi

εm
+ 2

This is the well-known Maxell-Wagner formula [6],
which is valid only for small φ values.

3. Comparison with experimental data
(εi > εm case)

Equation 13 is compared in Fig. 2 with the published
experimental data of Yamada [11], which are dielec-
tric constant values of a 0-3 system consisting of lead
zirconate titanate (PZT) particles in a polyvinylidene
fluoride (PVDF) matrix. In the same figure, we have
also shown the predictions due to Bruggeman’s formula
and the Jayasundere-Smith fromula. While all formu-
lae give reasonably good estimates of the experimental
data, as we have pointed out in the Introduction, the
Jayasundere’s formulation suffers from not giving cor-
rect asymptotic internal electric field inside the inclu-
sions when φ = 1.

4. Comparison with simulated data
(εi < εm case)

When εi is less than εm, Equation 13 is still valid.
Since it is difficult to find experimental data for

Figure 3 Predictions of Equation 13 compared with simulated data and
the formulae due to Jayasundere and Smith, and Bruggeman.

this case, we have in the present study employed a
boundary element simulation program to generate
data for the effective dielectric constant. The program
generates 64 spheres having dielectric constant εi = 1
embedded randomly (without overlapping) inside a
cube of matrix material having dielectric constant εm.
Two opposite sides of the cube are then considered
to be equipotential surfaces with an electric potential
difference U applied across them. The resulting total
charge Q on each surface is then calculated and the
effective dielectric constant ε of the composite is found
by the formula ε = Q/(U L), where L is the length of
a side of the cube. With both the number of spheres
and their radii kept constant, the value of L is varied
to give different volume fractions of the spheres in the
cube.

Fig. 3 shows the simulated data and those predicted
by Equation 13, the equations due to Jayasundere and
Smith, and Bruggeman. In this figure, for each volume
fraction value, the simulated value shown is the average
value found from five random spatial distributions of
the spheres.

Obviously, the Jayasundere prediction is too deviated
from the simulated data because as stated earlier, it is
not applicable for this situation.

When compared with the Bruggeman formula, it
is clear that Equation 13 gives a better fitting to the
simulated values.

5. Effective complex permittivity
Consider a harmonically oscillating electric field with
amplitude Eo and angular frequency ω applied across
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the composite. If both the inclusion and the matrix
materials are non-conductive, in the quasi-static limit,
the dielectric constant ε can be replaced by the com-
plex permittivity ε∗, which is a function of ω, defined
by ε∗(ω) = ε′(ω) − iε′′(ω).

Using Equation 13, we get

ε′ = 1

F
{(Cε′

m + Dε′
i)[ε

′
m(Aε′

i + Dε′
m)

− ε′′
m(Aε′′

i + Bε′′
m)] + (Cε′′

m + Dε′′
i )

× [ε′′
m(Aε′

i + Bε′
m) + ε′

m(Aε′′
i + Dε′′

m)]} (14)

ε′′ = 1

F
{(Cε′

m + Dε′
i)[ε

′′
m(Aε′

i + Dε′
m)

+ ε′
m(Aε′′

i + Bε′′
m)] − (Cε′′

m + Dε′′
i )

× [ε′
m(Aε′

i + Bε′
m) − ε′′

m(Aε′′
i + Dε′′

m)]} (15)

where A, B, C , D and F are defined by:

A = φ + (1 − φ)2/3

B = (1 − φ)(2 + φ)/3

C = φ + (1 − φ)(2 + φ)/3

D = (1 − φ)2/3

F = (Cε′
m + Dε′

i)
2 + (Cε′′

m + Dε′′
i )2

Similarly, the Jayasundere and Smith formula gives the
following effective complex permittivity:

ε′ = ε′
i −

1 − φ

M2 + N 2
[(ε′

i − ε′
m)M + (ε′′

i − ε′′
m)N ] (16)

ε′′ = ε′′
i − 1 − φ

M2 + N 2
[(ε′′

i − ε′′
m)M − (ε′

i − ε′
m)N ] (17)

where

M ≡ 1 − φ + 3φ

I 2 + J 2
(IK + JL)

N ≡ 3φ

I 2 + J 2
(IL − JK)

and

I ≡ (ε′
i + ε′′

i + 2ε′
m + 2ε′′

m)(ε′
i − ε′′

i + 2ε′
m − 2ε′′

m)

J ≡ 2(ε′
i + 2ε′

m)(ε′′
i + 2ε′′

m)

K ≡ ε′
m[(1 + 3φ)ε′

i + (2 − 3φ)ε′
m]

− ε′′
m[(1 + 3φ)ε′′

i + (2 − 3φ)ε′′
m]

L ≡ ε′′
m[(1 + 3φ)ε′

i + (2 − 3φ)ε′
m]

+ ε′
m[(1 + 3φ)ε′′

i + (2 − 3φ)ε′′
m]

Fig. 4a and b show, respectively, the values predicted
by Equations 14 through 17, compared with experi-
mental data for particulates of barium titanate (BaTiO3)
in a polyvinylidene fluoride-trifluoroethylene (P(VDF-
TrFE)) matrix [12].

(a)

(b)

Figure 4 (a) Real part of the effective complex permittivity predicted
by Equation 14, compared with experimental data (circles) of Cheung
et al. [12] and formulae due to Jayasundere and Smith (dashed lines), and
Bruggeman (dotted lines). From top to bottom, the volume fractions of
the inclusions are 0.49, 0.31 and 0.1, respectively. (b) Imaginary part of
the effective complex permittivity predicted by Equation 14, compared
with experimental data (circles) of Cheung et al. [12] and formulae due
to Jayasundere and Smith (dashed lines), and Bruggeman (dotted lines.)
From top to bottom, the volume fractions of the inclusions are 0.49, 0.31
and 0.1, respectively.

In our calculation, the experimental data for BaTiO3
ceramic is taken from von Hippel [13]. Also shown are
the values predicted by a linearized version of Brugge-
man’s formula [2, 3], reproduced below in our notation
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for completeness.

ε′
i − ε′

(ε′)1/3
= (1 − φ)(ε′

i − ε′
m)

(ε′
m)1/3

(18)

ε′′ = (ε′
i − ε′)(ε′

i + 2ε′
m)ε′ε′′

m

(ε′
i − ε′

m)(ε′
i + 2ε′)ε′

m

+ 3(ε′ − ε′
m)ε′ε′′

i

(ε′
i − ε′

m)(ε′
i + 2ε′)

(19)

Again, note that ε′ is still implicitly expressed in
Equation 18 and ε′′ depends on its value.

Fig. 4a and b depict that while at low inclusion
volume fraction (φ = 0.1), all three formulae pre-
dict values close to the experimental data; however,
Equation 13 out-performs the others when the volume
fraction is high (φ = 0.49).

6. Conclusion
The main idea involved in our derivation is to consider
the displacement field as experienced by a single par-
ticulate as the sum of two parts: one due to the pure
medium and the other due to the polarization of the
particulates embedded in the medium. By doing so, the
interaction between the particulates is taken into ac-
count. This idea is verified when compared with exper-
imental data, for we have shown, in Section 5, that the
derived formulae give reasonably good estimation for
the effective dielectric constant for inclusion volume
fraction up to about 0.5.

To conclude, we have derived a simple, analytical
formula for the prediction of the effective dielectric
constant of binary 0-3 composite materials. For non-
conductive constituents, it also predicts the effective
complex permittivity. Compared with the Jayasundere
and Smith formula, it gives the correct asymptotic value
for the internal electric field of the inclusions when their

volume fraction approaches one. It is applicable for a
larger range of the volume fraction of the inclusions
and is valid for all values for the dielectric constants
of the constituents, especially, for case εi < εm. Com-
pared with Bruggeman’s formula, it fits better to the
simulated data for the case εi < εm and the fact that it
is an explicit formula for the effective value makes it
more convenient to use, especially when the value is to
be embedded into another formula.
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